【转载】Ceph架构剖析

Posted on Posted in 计算机1,315 views

原文:https://www.ustack.com/blog/ceph_infra/

1. 介绍

云硬盘是IaaS云平台的重要组成部分,云硬盘给虚拟机提供了持久的块存储设备。目前的AWS 的EBS(Elastic Block store)给Amazon的EC2实例提供了高可用高可靠的块级存储卷,EBS适合于一些需要访问块设备的应用,比如数据库、文件系统等。 在OpenStack中,可以使用Ceph、Sheepdog、GlusterFS作为云硬盘的开源解决方案,下面我们来了解Ceph的架构。

Ceph是统一存储系统,支持三种接口。

    • Object:有原生的API,而且也兼容Swift和S3的API

    • Block:支持精简配置、快照、克隆

    • File:Posix接口,支持快照

Ceph也是分布式存储系统,它的特点是:

    • 高扩展性:使用普通x86服务器,支持10~1000台服务器,支持TB到PB级的扩展。

    • 高可靠性:没有单点故障,多数据副本,自动管理,自动修复。

    • 高性能:数据分布均衡,并行化度高。对于objects storage和block storage,不需要元数据服务器。

01ceph-architecture-1024x713.png

2. 背景

目前Inktank公司掌控Ceph的开发,但Ceph是开源的,遵循LGPL协议。Inktank还积极整合Ceph和其他云计算和大数据平台,目前Ceph支持OpenStack、CloudStack、OpenNebula、Hadoop等。

当前Ceph的最新稳定版本0.67(Dumpling),它的objects storage和block storage已经足够稳定,而且Ceph社区还在继续开发新功能,包括跨机房部署和容灾、支持Erasure encoding等。Ceph具有完善的社区设施和发布流程[1](每三个月发布一个稳定版本) 。

目前Ceph有很多用户案列,这是2013.03月Inktank公司在邮件列表中做的调查,共收到了81份有效反馈[2]。从调查中可以看到有26%的用户在生产环境中使用Ceph,有37%的用户在私有云中使用Ceph,还有有16%的用户在公有云中使用Ceph。

 02-ceph-census-status-1.png

02-ceph-census-status-3.png

 04-ceph-census-status-2.png

 
    目前Ceph最大的用户案例是Dreamhost的Object Service,目前总容量是3PB,可靠性达到99.99999%,数据存放采用三副本,它的价格比S3还便宜。下图中,左边是Inktank的合作伙伴,右边是Inktank的用户。

05-inktank-parter-customer-1024x471.png 

3. 架构

3.1 组件

06-ceph-topo.jpg

Ceph的底层是RADOS,它的意思是“A reliable, autonomous, distributed object storage”。 RADOS由两个组件组成:

    • OSD: Object Storage Device,提供存储资源。

    • Monitor:维护整个Ceph集群的全局状态。

RADOS具有很强的扩展性和可编程性,Ceph基于RADOS开发了 Object Storage、Block Storage、FileSystem。Ceph另外两个组件是:

    • MDS:用于保存CephFS的元数据。

    • RADOS Gateway:对外提供REST接口,兼容S3和Swift的API。

3.2 映射

Ceph的命名空间是 (Pool, Object),每个Object都会映射到一组OSD中(由这组OSD保存这个Object):

(Pool, Object) → (Pool, PG) → OSD set → Disk

Ceph中Pools的属性有:

    • Object的副本数

    • Placement Groups的数量

    • 所使用的CRUSH Ruleset

在Ceph中,Object先映射到PG(Placement Group),再由PG映射到OSD set。每个Pool有多个PG,每个Object通过计算hash值并取模得到它所对应的PG。PG再映射到一组OSD(OSD的个数由Pool 的副本数决定),第一个OSD是Primary,剩下的都是Replicas。

数据映射(Data Placement)的方式决定了存储系统的性能和扩展性。(Pool, PG) → OSD set 的映射由四个因素决定:

    • CRUSH算法:一种伪随机算法。

    • OSD MAP:包含当前所有Pool的状态和所有OSD的状态。

    • CRUSH MAP:包含当前磁盘、服务器、机架的层级结构。

    • CRUSH Rules:数据映射的策略。这些策略可以灵活的设置object存放的区域。比如可以指定 pool1中所有objecst放置在机架1上,所有objects的第1个副本放置在机架1上的服务器A上,第2个副本分布在机架1上的服务器B上。 pool2中所有的object分布在机架2、3、4上,所有Object的第1个副本分布在机架2的服务器上,第2个副本分布在机架3的服 器上,第3个副本分布在机架4的服务器上。

07-Distributed-Object-Store.png

Client从Monitors中得到CRUSH MAP、OSD MAP、CRUSH Ruleset,然后使用CRUSH算法计算出Object所在的OSD set。所以Ceph不需要Name服务器,Client直接和OSD进行通信。伪代码如下所示:

  locator = object_name
  obj_hash = hash(locator)
  pg = obj_hash % num_pg
  osds_for_pg = crush(pg)  # returns a list of osds
  primary = osds_for_pg[0]
  replicas = osds_for_pg[1:]

这种数据映射的优点是:

    • 把Object分成组,这降低了需要追踪和处理metadata的数量(在全局的层面上,我们不需要追踪和处理每个object的metadata和placement,只需要管理PG的metadata就可以了。PG的数量级远远低于object的数量级)。

    • 增加PG的数量可以均衡每个OSD的负载,提高并行度。

    • 分隔故障域,提高数据的可靠性。

3.3 强一致性

        Ceph的读写操作采用Primary-Replica模型,Client只向Object所对应OSD set的Primary发起读写请求,这保证了数据的强一致性。

        由于每个Object都只有一个Primary OSD,因此对Object的更新都是顺序的,不存在同步问题。

        当Primary收到Object的写请求时,它负责把数据发送给其他Replicas,只要这个数据被保存在所有的OSD上时,Primary才应答Object的写请求,这保证了副本的一致性。

08-replication.png

3.4 容错性

在分布式系统中,常见的故障有网络中断、掉电、服务器宕机、硬盘故障等,Ceph能够容忍这些故障,并进行自动修复,保证数据的可靠性和系统可用性。

          Monitors是Ceph管家,维护着Ceph的全局状态。Monitors的功能和zookeeper类似,它们使用Quorum和Paxos算法去建立全局状态的共识。

          OSDs可以进行自动修复,而且是并行修复。

故障检测:

OSD之间有心跳检测,当OSD A检测到OSD B没有回应时,会报告给Monitors说OSD B无法连接,则Monitors给OSD B标记为down状态,并更新OSD Map。当过了M秒之后还是无法连接到OSD B,则Monitors给OSD B标记为out状态(表明OSD B不能工作),并更新OSD Map。

备注:可以在Ceph中配置M的值。

故障恢复:

        当某个PG对应的OSD set中有一个OSD被标记为down时(假如是Primary被标记为down,则某个Replica会成为新的Primary,并处理所有读写 object请求),则该PG处于active+degraded状态,也就是当前PG有效的副本数是N-1。

        过了M秒之后,假如还是无法连接该OSD,则它被标记为out,Ceph会重新计算PG到OSD set的映射(当有新的OSD加入到集群时,也会重新计算所有PG到OSD set的映射),以此保证PG的有效副本数是N。

          新OSD set的Primary先从旧的OSD set中收集PG log,得到一份Authoritative History(完整的、全序的操作序列),并让其他Replicas同意这份Authoritative History(也就是其他Replicas对PG的所有objects的状态达成一致),这个过程叫做Peering。

         当Peering过程完成之后,PG进 入active+recoverying状态,Primary会迁移和同步那些降级的objects到所有的replicas上,保证这些objects 的副本数为N。

4. 优点

4.1 高性能

    • Client和Server直接通信,不需要代理和转发

    • 多个OSD带来的高并发度。objects是分布在所有OSD上。

    • 负载均衡。每个OSD都有权重值(现在以容量为权重)。

    • client不需要负责副本的复制(由primary负责),这降低了client的网络消耗。

09-ceph-striped-paralle-client-writes-300x245.png

4.2 高可靠性

    • 数据多副本。可配置的per-pool副本策略和故障域布局,支持强一致性。

    • 没有单点故障。可以忍受许多种故障场景;防止脑裂;单个组件可以滚动升级并在线替换。

    • 所有故障的检测和自动恢复。恢复不需要人工介入,在恢复期间,可以保持正常的数据访问。

    • 并行恢复。并行的恢复机制极大的降低了数据恢复时间,提高数据的可靠性。

10-automatic-failure-detection-300x244.png

11-distributed-recovery-300x241.png

4.3 高扩展性

    • 高度并行。没有单个中心控制组件。所有负载都能动态的划分到各个服务器上。把更多的功能放到OSD上,让OSD更智能。

    • 自管理。容易扩展、升级、替换。当组件发生故障时,自动进行数据的重新复制。当组件发生变化时(添加/删除),自动进行数据的重分布。

12-ceph-scale-300x195.png

5. 测试

使用fio测试RBD的IOPS,使用dd测试RBD的吞吐率,下面是测试的参数:

    • fio的参数:bs=4K, ioengine=libaio, iodepth=32, numjobs=16, direct=1

    • dd的参数:bs=512M,oflag=direct

我们的测试服务器是AWS上最强的实例:

    • 117GB内存

    • 双路 E5-2650,共16核

    • 24 * 2TB 硬盘

服务器上的操作系统是Ubuntu 13.04,安装Ceph Cuttlefish 0.61版,副本数设置为2,RBD中的块大小设置为1M。为了对比,同时还对软件RAID10进行了测试。下面表格中的性能比是Ceph与RAID10性能之间的比较。 

5.1 注意

因为使用的是AWS上的虚拟机,所以它(Xen)挂载的磁盘都是设置了Cache的。因此下面测试的数据并不能真实反应物理磁盘的真实性能,仅供与RAID10进行对比。

5.2 IOPS

磁盘数随机写随机读
CephRAID10性能比CephRAID10性能比
241075377228%60454679129%
12665163340%2939434067%
641383249%909144562%
432855958%66681581%
212027343%31950363%

5.3 吞吐率

磁盘数顺序写(MB/S)顺序读(MB/S)
CephRAID10性能比CephRAID10性能比
2429987933%617184333%
1221270330%445112639%
68130826%23370932%
46728423%17046936%
23415322%9024037%

5.4 结果分析

从测试结果中,我们看到在单机情况下,RBD的性能不如RAID10,这是为什么?我们可以通过三种方法找到原因:

    • 阅读Ceph源码,查看I/O路径

    • 使用blktrace查看I/O操作的执行

    • 使用iostat观察硬盘的读写情况

RBD的I/O路径很长,要经过网络、文件系统、磁盘:

Librbd -> networking -> OSD -> FileSystem -> Disk

Client的每个写操作在OSD中要经过8种线程,写操作下发到OSD之后,会产生2~3个磁盘seek操作:

    • 把写操作记录到OSD的Journal文件上(Journal是为了保证写操作的原子性)。

    • 把写操作更新到Object对应的文件上。

    • 把写操作记录到PG Log文件上。

我使用fio向RBD不断写入数据,然后使用iostat观察磁盘的读写情况。在1分钟之内,fio向RBD写入了3667 MB的数据,24块硬盘则被写入了16084 MB的数据,被读取了288 MB的数据。

向RBD写入1MB数据 = 向硬盘写入4.39MB数据 + 读取0.08MB数据

6. 结论

在单机情况下,RBD的性能不如传统的RAID10,这是因为RBD的I/O路径很复杂,导致效率很低。但是Ceph的优势在于它的扩展性,它的性能会随着磁盘数量线性增长,因此在多机的情况下,RBD的IOPS和吞吐率会高于单机的RAID10(不过性能会受限于网络的带宽)。

如前所述,Ceph优势显著,使用它能够降低硬件成本和运维成本,但它的复杂性会带来一定的学习成本。

Ceph的特点使得它非常适合于云计算,那么OpenStack使用Ceph的效果如何?下期《Ceph与OpenStack》将会介绍Ceph的自动化部署、Ceph与OpenStack的对接。

 

[1]  http://www.ustack.com/blog/ceph-distributed-block-storage/#2_Ceph

[2]  http://ceph.com/community/results-from-the-ceph-census/


转载标明出处:https://blog.evanxia.com/2016/01/181